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Abstract
Replay buffers are a key component in many rein-
forcement learning schemes. Yet, their theoretical
properties are not fully understood. In this paper
we analyze a system where a stochastic process X
is pushed into a replay buffer and then randomly
sampled to generate a stochastic process Y from
the replay buffer. We provide an analysis of the
properties of the sampled process such as station-
arity, Markovity and autocorrelation in terms of
the properties of the original process. Our theoret-
ical analysis sheds light on why replay buffer may
be a good de-correlator. Our analysis provides
theoretical tools for proving the convergence of
replay buffer based algorithms which are preva-
lent in reinforcement learning schemes.

1. Introduction
A Replay buffer (RB) is a mechanism for saving past gen-
erated data samples and for sampling data for off-policy
reinforcement learning (RL) algorithms (Lin, 1993). The
RB serves a First-In-First-Out (FIFO) buffer with a fixed ca-
pacity and it enables sampling mini-batches from previously
saved data points. Its structure and sampling mechanism pro-
vide a unique characteristic: the RB serves as de-correlator
of data samples. Typically, the agent in RL algorithms en-
counters sequences of highly correlated states and learning
from these correlated data points may be problematic since
many deep learning algorithms suffer from high estimation
variance when data samples are dependent. Thus, a mecha-
nism that decorrelates the input such as the RB can improve
data efficiency and reduce sample complexity.

Since its usage in the DQN algorithm (Mnih et al., 2013),
RB mechanism have become popular in many off-policy
RL algorithms (Lillicrap et al., 2015; Haarnoja et al., 2018).
Previous work has been done on the empirical benefits of
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RB usage (Fedus et al., 2020; Zhang & Sutton, 2017), but
still there is a lack in theoretical understanding of how the
RB mechanism works. Understanding the properties of
RBs is crucial for convergence and finite sample analysis
of algorithms that use a RB in training. For the best of our
knowledge, this is the first work to tackle these theoretical
aspects.

In this work we focus on the following setup. We define a
random process X that is pushed into a N samples size RB
and analyze the characteristics of the stochastic process of
K samples that is sampled from the RB. We analyze if prop-
erties of the original random process such as Markovity and
stationarity are maintained and quantify the auto-correlation
and covariance in the new RB process (later denoted by Y )
when possible.

Our motivation comes from RL algorithms that use RB.
Specifically, we focus on the induced Markov chain given
a policy but we note that the analysis in this paper is also
relevant to general random processes that are kept in a FIFO
queue. This is relevant for domains such as First Come First
Served domains (Laguna & Marklund, 2013). Our goal is
to provide analytical tools for analyzing algorithms that use
RBs. Our results can provide theoretical understanding of
phenomena seen in experiments using RBs that have never
been analyzed theoretically before. Our theory for RBs
provides tools for proving convergence of RB-based RL
algorithms.

Our main contributions are:

1. Formulating RBs as random processes and analyze
their properties such as stationarity, Markovity, ergod-
icity, auto-correlation and covariance.

2. Comparing between properties of the original random
process that was pushed into the RB and the sampled
process at the output of the RB. Particularly we prove
that when sampling uniformly from the RB, the RB
forms as a de-correlator between the sampled batches.

3. Connecting our RB theory to RL by demonstrating
this connection through a RB-based actor critic RL
algorithm that samples K transitions from RB with
size N for updating its parameters. We prove, for
the first time, the asymptotic convergence of such RB-
based actor critic algorithm.
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Figure 1. Replay buffer flow diagram: Process X enters the RB which stores {Xt, . . . Xt−N−1} in positions (1, . . . , N), respectively. As
time proceeds and t > N , old transition are thrown away from the RB. At each time step t, a random subset of K time steps is sampled
from the RB and is denoted as Jt. W is simply [RB, J ]. Y is the process of averaging a function over X at times from the subset J .
Lastly, the process Z is simply a function applied on the variable X. Comparing Y to Z, we can see that Z can serve as an online update
while Y can serve as a RB-based update.

The paper is structured as follows. We begin with present-
ing the setup in Section 2. We then state our main results
regarding RB properties in Section 3. In Section 4 we con-
nect between our RB theory and its use in RL and provide a
convergence proof for an RB-based actor critic algorithm.
Afterward, in Section 5 we position our work in existing
literature and conclude in Section 6.

2. Setup for Replay Buffer Analysis
2.1. Replay Buffer Structure

Let X ≜ (Xt)
∞
t=0 be a stochastic process where the sub-

script t indicates time. The samples are dynamically pushed
into a Replay Buffer (RB; Lin, 1993; Mnih et al., 2013) of
capacity N , i.e., it is a First-In-First-Out (FIFO) buffer that
can hold the N latest samples. We define the state of the RB
at time t with RBt = {Xt−N+1, . . . , Xt}. Suppose that
the buffer cells are numbered from 1 to N . The latest obser-
vation of X is pushed into cell 1, the observation before into
cell 2, etc. When a new observation arrives, the observation
in cell n is pushed into cell n+1 for 1 ≤ n < N , while the
observation in cell N is thrown away.

The random process RB = (RBt)
∞
t=0 contains the last

N samples of X . The random process Y is defined as
the average of random K samples (without replacement)
out of the N samples and applying a function f(·) : · →
RD 1 where D is the dimension of the algorithm2. The

1We note that f(·) may also depend on t but we leave that for
the sake of simplicity.

2For example, in linear function approximation of Actor-Critic
algorithms, D is the dimension of the linear basis used to approxi-
mate the value function by the critic.

function f(·) may correspond to a typical RL function that
one usually find in RL algorithms such as linear function
approximation, Temporal Difference, etc. (Bertsekas &
Tsitsiklis, 1996). We elaborate on possible RL functions in
Section 4.2.

2.2. Replay Buffer Sampling Method

We analyze the ”unordered sampling without replacement”
strategy from the RB. We note that other sampling meth-
ods may be analyzed, but we chose this specific sampling
due to its popularity in many deep reinforcement learning
algorithms3. Let N be a set of indices: N = {1, . . . , N}
and let J̄ be a subset of K indices from N. Given N and
K, let CN,K be the set of all possible subsets J̄ for specific
N and K. Then, the probability of sampling subset J̄ is
pN,K

binom(J̄) =
1

(NK)
∀J̄ ∈ CN,K , where

(
N
K

)
≜ N !

(N−K)!K! is

the binomial coefficient.

2.3. Replay Buffer Related Processes

We denote the set of K temporal indices of the samples from
RB by the random process J (corresponds to a ”Batch” in
Deep Learning) where Jt = {jk}Kk=1 ⊂ {t−N+1, . . . , t}4.
Similarly, the corresponding K RB indices process is J̄
where J̄t ⊂ {1, . . . , N}. We remark that both Jt and J̄t
contain identical information but one refers to the absolute
time, and one to the indices of the RB. We define the random
process Wt ≜ [RBt, Jt] which holds both the information

3In Section 6 we discuss shortly future directions for other
sampling schemes.

4We note that in the first K steps the batch is of size smaller
than K and in the first N steps the RB is not full.
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on the RB as well on the sampling from it. For later usage,
we define the process Xt going through a function f(·) with
Zt ≜ f(Xt). The resulting Yt has the structure of

Yt =
1

K

∑
j∈Jt

Zj =
1

K

∑
j∈Jt

f(Xj).

The stochastic processes relations that are described above
are visualized in Figure 1.

3. Replay Buffer Properties
In this section we analyze the properties of a random pro-
cess Y that is sampled from the RB and used in some RL
algorithm. Specifically, we analyze stationarity, Markovity,
ergodicity, auto-correlation, and covariance.

3.1. Stationarity, Markovity and Ergodicity

The following Lemmas characterize the connection between
different properties of X that enter the RB and the properties
of the processes RB and Y.

Stationarity is not a typical desired RL property since we
constantly thrive to improve the policy (and thus the induced
policy) but we bring it here for the sake of completeness.

Lemma 1 (Stationarity). Let Xt and Jt be stationary pro-
cesses. Then, RBt and Yt are stationary.

The proof for Lemma 1 is deferred to Section A.1 in the
supplementary material.

In the next Lemma we analyze when the process RB
is Markovian. This property is important in RL analy-
sis. However, we note that Yt is not necessarily Marko-
vian but Wt is Markovian. For this, we define Xn2

n1
(t) ≜

{Xt−n2+1, . . . , Xt−n1+1|RBt} as the set of random vari-
ables from process X stored in the RB at time t from posi-
tion n1 to n2.

Lemma 2 (Markovity). Let Xt be a Markov process. Then:
(1) RBt and Wt are Markovian. (2) The transition proba-
bilities of RBt for t ≥ N are:

P (RBt+1|RBt)

=


P (Xt+1|Xt) if Xt ∈ X1

1 (t)

and RBt+1 = {Xt+1} ∪XN−1
1 (t),

0 otherwise.

If Jt is sampled according to ”unordered sampling without
replacement”, then the transition probabilities of Wt for
t ≥ N are:

P (Wt+1|Wt)

=


1

(NK)
P (Xt+1|Xt) ∀Jt+1 ∈ CN,K , if Xt ∈ X1

1 (t)

and RBt+1 = {Xt+1} ∪XN−1
1 (t)

0 otherwise.

The proof for Lemma 2 is deferred to Section A.2 in the
supplementary material.

In RL, the properties of apreiodicity and irreducible (that
together form ergodicity; Norris, 1998) are crucial in many
convergence proofs. The following states that these proper-
ties are preserved when using RB.

Lemma 3 (Ergodicity). Let Xt be a Markov process that is
aperiodic and irreducible. Then, RBt and Wt are aperiodic
and irreducible. Moreover, every point y ∈ supp(Yt) is
visited infinitely often.

The proof for Lemma 3 is deferred to Section A.3 in the
supplementary material.

3.2. Auto-Correlation and Covariance

In this section we analyze the auto-correlation and covari-
ance of the process Y expressed by process X properties.
When X is stationary, the auto-correlation and covariance
functions for X are:

RX(τ) = E[XtXt+τ ]

CX(τ) = E [(Xt − E [Xt]) (Xt+τ − E [Xt+τ ])]

In the same way, the definition of the auto-correlation and co-
variance functions for the process Y are RY (τ) and CY (τ),
respectively. In the following theorem we prove the relation-
ship between the auto-correlation and covariance functions
of processes Y and X . For that, we need to define the distri-
bution of all differences between two batches of samples as
follows.

Definition 1 (Distribution between two batches of samples).
Consider a RB of size N . Consider taking two different
random permutations (batches), denoted by Ba and Bb,
both of length K in two possibly different time points, ta
and tb = ta + τ . Let τ ′K be a random variable where
its distribution and expectation are denoted by Fτ ′

K
(·) and

Eτ ′
K
(·), is the probability of each difference between each

sample of Ba and Bb.

We note that the support of τ ′ is τ−N+1 ≤ τ ′K ≤ τ+N−1.
Then,

Theorem 1 (Auto-Correlation and Covariance). Let τ be
the difference between two time steps of the processes Y .
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Then:

RY (τ) = Eτ ′
K
[RZ(τ

′
K)] ,

CY (τ) = Eτ ′
K
[CZ(τ

′
K)] .

(1)

The proof for Theorem 1 is in Section B.2 in the supplemen-
tary material. We note two things. First, we note that we did
not specify how the sampling is done from the RB and it is
expressed by the random variable τ ′ from Definition 1, i.e.,
Eq. (1) is a general expression. Second, we note that we
express the correlation using process Z and not process X
directly, but process Z auto-correlation and covariance can
be computed directly in any practical case using the relation
Zt = f(Xt).

For the specific case of ”unordered sampling without re-
placement”, we express the relation between the second
moments of Z and Y explicitly through the distribution of
τ ′.

Lemma 4 (Distribution for uniform batches). The random
variable τ ′ distribution for ”unordered sampling without
replacement” is

P (τ ′) =


N−|d|
N2 τ ′ = τ + d,

d ∈ {−N + 1, . . . 0, . . . N − 1}
0 τ ′ < τ −N + 1 or τ ′ > τ +N − 1

.

The proof for Lemma 4 is in the Section B.3 in the sup-
plementary material. In the following corollary we state
the exact dependence in the case of random sampling of K
samples from a RB with size N .

Corollary 1. Consider process Z where sampling is accord-
ing to ”unordered sampling without replacement”. Then,
the auto-correlation and covarinace of the process Y are:

RY (τ) =
1

N2

N−1∑
d=−N+1

(N − |d|)RZ(d+ τ)

CY (τ) =
1

N2

N−1∑
d=−N+1

(N − |d|)CZ(d+ τ)

The proof for Corollary 1 is in the Section B.4 in the sup-
plementary material. We see that using a RB reduces the
autocorrelation and covaraince of process Z by factor of N .
Interestingly, this reduction is independent of K. This result
proves the de-correlation effect of using RBs and provides
an explicit expression for that.

4. Replay Buffers in Reinforcement Learning
In the previous section we analyzed properties of stochastic
processes that go through a RB. In this section we ana-
lyze RBs in RL. Stabilizing learning in modern off-policy

deep RL algorithms, such as Deep Q-Networks (Mnih et al.,
2013) or DDPG (Lillicrap et al., 2015), is based on saving
past observed transitions in a RB. Even though its use is
extensive, the theoretical understanding of sampling batches
mechanism from a RB is still quite limited. This is our focus
in this section.

We begin with describing the setup that will serve us in this
section. Then we connect between the random processes as
defined in Section 3 and common stochastic updates used
in RL. We then describe an RB-based actor-critic algorithm
that uses a batch of K samples from the RB in each pa-
rameters update step. This type of algorithm serves as a
basic example for popular usages of RBs in RL. We note
that other versions of RB-based RL algorithms (such as
deep RL algorithms, value-based algorithms, discounted
settings of the value function) can be analyzed with the
stochastic processes tools we provide in this work. Finally,
we present a full convergence proof for the RB-based actor
critic algorithm.

Despite its popularity, to the best of our knowledge, there
is only handful of proofs that consider RB in RL algorithm
analysis (e.g., Di-Castro Shashua et al., 2021 or Lazic et al.,
2021). Most of the convergence proofs for off-policy algo-
rithms assume that a single sample is sampled from the RB.
Di-Castro Shashua et al. (2021) proved for the first time the
convergence of an RB-based algorithm. However, their al-
gorithm and technical tools were focused on the sim-to-real
challenge with multiple MDP environments, and they fo-
cused only on a single sample batch from the RB instead of
K (which complicates the proof). Therefore, for complete-
ness and focusing on the RB properties, we provide a proof
for RB-based algorithms, with a single MDP environment
and a batch of K samples. Similarly to previous works, we
consider here a setup with linear function approximation
(Bertsekas & Tsitsiklis, 1996).

4.1. Setup for Markov Decision Process

An environment in RL is modeled as a Markov Decision Pro-
cess (MDP; Puterman, 1994), where S and A are the state
space and action space, respectively. We let P (S′|S,A)
denote the probability of transitioning from state S ∈ S
to state S′ ∈ S when applying action A ∈ A. We
consider a probabilistic policy πθ(A|S), parameterized by
θ ∈ Θ ⊂ Rd which expresses the probability of the agent to
choose an action A given that it is in state S. The MDP mea-
sure P (S′|S,A) and the policy measure πθ(A|S) induce
together a Markov Chain (MC) measure Pθ(S

′|S). We let
µθ denote the stationary distribution induced by the policy
πθ. The reward function is denoted by r(S,A).

In this work we focus on the average reward setting 5. The

5The discount factor settings can be obtained in similar way to
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goal of the agent is to find a policy that maximizes the
average reward that the agent receives during its interaction
with the environment. Under an ergodicity assumption,
the average reward over time eventually converges to the
expected reward under the stationary distribution (Bertsekas,
2005):

ηθ ≜ lim
T→∞

∑T
t=0 r(St, At)

T
= ES∼µθ,A∼πθ

[r(S,A)].

(2)

The state-value function evaluates the overall expected ac-
cumulated rewards given a starting state S and a policy
πθ

V πθ (S) ≜ E

[ ∞∑
t=0

(r(St, At)− ηθ)

∣∣∣∣∣S0 = S, πθ

]
, (3)

where the actions follow the policy At ∼ πθ(·|St) and
the next state follows the transition probability St+1 ∼
P (·|St, At).

Let O = {S,A, S′} be a transition from the environment.
Let Ot be a transition at time t. The temporal difference
error δ(O) (TD; Bertsekas & Tsitsiklis, 1996) is a random
variable based on a single sampled transition from the RB,

δ(O) = r(S,A)− η + ϕ(S′)⊤w − ϕ(S)⊤w, (4)

where V̂ πθ
w (S) = ϕ(S)⊤w is a linear approximation for

V πθ (S), ϕ(S) ∈ Rd is a feature vector for state S and
w ∈ Rd is the critic parameter vector.

4.2. Replay Buffer as a Random Process in RL

In Section 3 we compared between properties of general ran-
dom process X going through a RB and yielding a process
Y . In the RL context we have Xt ≜ Ot, meaning our basic
component is a single transition of state-action-next-state
observed at time t. In addition, we defined Zt ≜ f(Xt)
process where f(·) is a general function. In RL, f(·) is
commonly defined as the value function, the Q-function, the
TD-error, the empirical average reward, the critic or actor
gradients or any other function that computes a desirable
update, based on an observed transition O. Common RL
algorithms that use a single f(Ot) computation in the pa-
rameters update step are commonly referred as on-policy
algorithms where they update their parameters based only
on the last observed transition in the Markov chain. See
Figure 1 for a comparison between on-line updates and RB-
based updates. Using the formulation of random processes
we presented in Section 3, we can characterize the on-line

current setup.

Algorithm 1 Linear Actor Critic with RB samples
1: Initialize Replay Buffer RB with size N .
2: Initialize actor parameters θ0, critic parameters w0 and

average reward estimator η0.
3: Learning steps {αη

t }, {αw
t }, {αθ

t }.
4: for t = 0, . . . do
5: Interact with MDP M according to policy πθt and

add the transition {St, At, r(St, At), St+1} to RBt.
6: Sample Jt - K random time indices form RBt. De-

note the corresponding transitions as {Oj}j∈Jt
.

7: δ(Oj) = r(Sj , Aj)− ηt + ϕ(S′
j)

⊤wt − ϕ(Sj)
⊤wt

8: Update average reward
ηt+1 = ηt + αη

t (
1
K

∑
j∈Jt

r(Sj , Aj)− ηt)

9: Update critic wt+1 = wt+αw
t

1
K

∑
j∈Jt

δ(Oj)ϕ(Sj)

10: Update actor θt+1 = Γ
(
θt −

αθ
t

1
K

∑
j∈Jt

δ(Oj)∇θ log πθ(Aj |Sj)
)

11: end for

updates, based on a single last transition as follows:

Z reward
t = freward(Ot) = r(St, At)− ηt

Zcritic
t = fcritic(Ot) = δ(Ot)ϕ(St)

Zactor
t = factor(Ot) = δ(Ot)∇ log πθ(At|St)

When using RB-based off-policy algorithms, the parameters
updates are computed over an average of K functions which
are based on K transitions that were sampled randomly
from the last stored N transitions. This exactly matches
our definition of the process Y : Yt =

1
K

∑
j∈Jt

f(Xj) =
1
K

∑
j∈Jt

Zj . The following updates are typical in RB-
based off-policy algorithms:

Y reward
t =

1

K

∑
j∈Jt

Z reward
j =

1

K

∑
j∈Jt

r(Sj , Aj)− ηt

Y critic
t =

1

K

∑
j∈Jt

Zcritic
j =

1

K

∑
j∈Jt

δ(Oj)ϕ(Sj)

Y actor
t =

1

K

∑
j∈Jt

Zactor
j =

1

K

∑
j∈Jt

δ(Oj)∇ log πθ(Aj |Sj)

(5)

In Algorithm 1, we present a linear actor critic algorithm
based on RB samples where the algorithm updates the actor
and critic using a random batch of transitions from the RB.
In Section 4.5 we show how the results from Section 3
regarding a random process that is pushed into the RB, and
the definitions of X and Y processes are helpful in proving
the asymptotic convergence of this algorithm.

4.3. Linear Actor Critic with RB samples Algorithm

The basic RB-based algorithm we analyze in this work is
presented in Algorithm 1. We propose a two time scale



Analysis of Stochastic Processes through Replay Buffers

linear actor critic optimization scheme (similarly to Konda &
Tsitsiklis, 2000), which is an RB-based version of Bhatnagar
et al. (2008) algorithm. Our algorithm is fully described
by Wt = [RBt, Jt] and by the algorithm updates Y reward

t ,
Y critic
t and Y actor

t described in equation (5). See Figure 2 for
a visualized flow diagram of Algorithm 1.

In algorithm 1 we consider an environment, modeled as an
MDP M , and we maintain a replay buffer RB with capacity
N . The agent collects transitions {S,A, r(S,A), S′} from
the environment and stores them in the RB. We train the
agent in an off-policy manner. At each time step t, the agent
samples Jt – a subset of K random time indices from RBt

which defines the random transitions batch for optimizing
the average reward, critic and actor parameters. Note that
for the actor updates, we use a projection Γ(·) that projects
any θ ∈ Rd to a compact set Θ whenever θ /∈ Θ.

4.4. Expectations of critic and actor updates in
Algorithm 1

We divide the convergence analysis of Algorithm 1 into two
parts. The first part, presented in this section, is unique to
our paper - we describe in Lemmas 5 and 6 a closed form
of the expectations of the actor and critic updates, based
on a random batch of K transitions from the RB. In the
second part, presented in Section 4.5, we use Stochastic
Approximation (SA) tools for proving the algorithm updates
convergence, based on the results from Lemmas 5 and 6. We
note that Section 4.5 follows the steps of the convergence
proofs presented by Di-Castro Shashua et al. (2021) and
Bhatnagar et al. (2009).

For time t − n + 1 where 1 ≤ n ≤ N , we define the in-
duced MC with a corresponding policy parameter θt−n+1.
For this parameter, we denote the corresponding state dis-
tribution vector ρt−n+1 and a transition matrix Pt−n+1

(both induced by the policy πθt−n+1
). Finally, we define

the following diagonal matrix Dt−n+1 ≜ diag(ρt−n+1)
and the reward vector rt−n+1 with elements rt−n+1(S) =∑

A πθt−n+1
(A|S)r(S,A). Based on these definitions we

define

Ct ≜
1

N

N∑
n=1

Dt−n+1 (Pt−n+1 − I)

bt ≜
1

N

N∑
n=1

Dt−n+1 (rt−n+1 − ηθe) .

(6)

where I is the identity matrix and e is a vector of ones. Let
Dθ ≜ diag(µθ) and define

Cθ ≜ Dθ (Pθ − I) , bθ ≜ Dθ (rθ − ηθe) . (7)

In our RB setting, since we have at time t a RB with the last
N samples, Ct and bt in Equation (6) represent a superposi-
tion of all related elements of these samples. For proving

the convergence of the critic, we assume the policy is fixed.
Then, when t → ∞, ρt−n+1 → µθ for all index n. This
means that the induced MC is one for all the samples in the
RB, so the sum over N disappear for Cθ and bθ.

The following two lemmas compute the expectation of the
critic and actor updates when using a random batch of K
samples. The expectations are over all possible random
batches sampled from the RB. Recall that J̄t ⊂ {1, . . . , N}
and CN,K is the set of all possible subsets J̄ for specific
N and K. These lemmas are the main results for proving
convergence of RB-based RL algorithms.

Lemma 5. Assume we have a RB with N transitions and
we sample random K transitions from the RB. Then:

EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt 1

K

∑
n∈J̄t

δ(Ot−n+1)ϕ(St−n+1)

 = Φ⊤CθΦw +Φ⊤bθ,

where Cθ and bθ are defined in (7).

Lemma 6. Assume we have a RB with N transitions and
we sample random K transitions from the RB. Then:

EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt 1

K

∑
n∈J̄t

δπθ (Ot−n+1)∇θ log πθ(At−n+1|St−n+1)


= ∇θηθ −

∑
S

µθ(S)
(
ϕ(S)⊤∇θw

πθ −∇θV̄
πθ (S)

)
,

where V̄ πθ (S) =
∑

A∈A πθ(A|S)
(
r(S,A) − ηθ

+
∑

S′∈S P (S′|S,A)ϕ(S′)⊤wπθ
)
.

The proofs for Lemmas 5 and 6 are in sections C.1 and D.1,
respectively, in the supplementary material.

4.5. Asymptotic Convergence of Algorithm 1

We are now ready to present the convergence theorems for
the critic and actor in Algorithm 1. In the proof of our the-
orems we use tools from Stochastic Approximation (SA)
(Kushner & Yin, 2003; Borkar, 2009; Bertsekas & Tsitsiklis,
1996), a standard tool in the literature for analyzing itera-
tions of processes such as two time scale Actor-Critic in the
context of RL.

We showed in Lemma 2 that the process Wt = [RBt, Jt] of
sampling K random transitions from the RB is a Markov
process. In addition, we showed in Lemma 3 that if the
original Markov chain is irreducible and aperiodic, then also
the RB Markov process is irreducible and aperiodic. This
property is required for the existence of unique stationary
distribution and for proving the convergence of the iterations
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Figure 2. Replay buffer in reinforcement learning flow diagram: The random processes described in Figure 1 are reflected in Algorithm 1.
Here the random process that enters the RB is O which is a tuple of (S,A, S′). The RB stores the last N transitions {Ot, . . . Ot−N−1}
in positions (1, . . . , N), respectively. As time proceeds and t > N , old transition are thrown away from the RB. At each time step t,
a random subset of K time steps is sampled from the RB and is denoted as Jt. W is simply [RB, J ]. In Algorithm 1 we have three
different updates, Y reward

t , Y critic
t and Y actor

t , all are averages over functions of transitions sampled from the RB. Then the parameters are
updated accordingly. Finally, the policy parameter θt+1 is used to sample the action in transition Ot+1 that later enters to the RB.

in Algorithm 1 using SA tools. We note that proving con-
vergence for a general function approximation is hard. We
choose to demonstrate the convergence for a linear function
approximation (LFA; Bertsekas & Tsitsiklis, 1996), in order
to keep the convergence proof as simple as possible while
focusing in the proof on the RB and random batches aspects
of the algorithm.

We present several assumptions that are necessary for prov-
ing the convergence of Algorithm 1. Assumption 4 is needed
for the uniqueness of the convergence point of the critic.
In addition, we choose a state S∗ to be of value 0, i.e.,
V πθ (S∗) = 0 (due to Assumption 2, S∗ can be any of
S ∈ S). Assumption 5 is required in order to get a with
probability 1 using the SA convergence. In our actor-critic
setup we need two time-scales convergence, thus, in this
assumption the critic is a ‘faster’ recursion than the actor.

Assumption 1. 1. The set Θ is compact. 2. The reward
|r(·, ·)| ≤ 1 for all S ∈ S, A ∈ A.

Assumption 2. For any policy πθ, the induced Markov
chain of the MDP process {St}t≥0 is irreducible and aperi-
odic.

Assumption 3. For any state–action pair (S,A), πθ(A|S)
is continuously differentiable in the parameter θ.

Assumption 4. 1. The matrix Φ has full rank. 2. The
functions ϕ(S) are Liphschitz in s and bounded. 3. For
every w ∈ Rd, Φw ̸= e where e is a vector of ones.

Assumption 5. The step-sizes {αη
t }, {αw

t }, {αθ
t }, t ≥

0 satisfy
∑∞

t αη
t =

∑∞
t αw

t =
∑∞

t αθ
t = ∞,∑∞

t (αη
t )

2,
∑∞

t (αw
t )

2,
∑∞

t (αθ
t )

2 < ∞ and αθ
t =

o(αw
t ).

Now we are ready to prove the following theorems, regard-
ing Algorithm 1. We note that Theorem 2 and 3 state the
critic and actor convergence.

Theorem 2. (Convergence of the Critic to a fixed point)
Under Assumptions 1-5, for any given π and {ηt}, {wt}
as in the updates in Algorithm 1, we have ηt → ηθ and
wt → wπ with probability 1, where wπ is obtained as a
unique solution to Φ⊤CθΦw +Φ⊤bθ = 0.

The proof for Theorem 2 is in Section C in the supple-
mentary material. It follows the proof for Lemma 5 in
Bhatnagar et al. (2009). For establishing the convergence
of the actor updates, we define additional terms. Let Z de-
note the set of asymptotically stable equilibria of the ODE
θ̇ = Γ̂(−∇θηθ) and let Zϵ be the ϵ-neighborhood of Z . We
define ξπθ =

∑
S µθ(S)

(
ϕ(S)⊤∇θw

πθ −∇θV̄
πθ (S)

)
.
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Theorem 3. (Convergence of the actor)
Under Assumptions 1-5, given ϵ > 0, ∃δ > 0 such that for
θt, t ≥ 0 obtained using Algorithm 1, if supθt ∥ξ

πθt∥ < δ,
then θt → Zϵ as t → ∞ with probability one.

The proof for Theorem 3 is in Section D in the supple-
mentary material. It follows the proof for Theorem 2 in
Bhatnagar et al. (2009).

5. Related Work
Actor critic algorithms analysis: The convergence analy-
sis of our proposed RB-based actor critic algorithm is based
on the Stochastic Approximation method (Kushner & Clark,
2012). Konda & Tsitsiklis (2000) proposed the actor-critic
algorithm, and established the asymptotic convergence for
the two time-scale actor-critic, with TD(λ) learning-based
critic. Bhatnagar et al. (2009) proved the convergence result
for the original actor-critic and natural actor-critic methods.
Di Castro & Meir (2010) proposed a single time-scale actor-
critic algorithm and proved its convergence. Works on finite
sample analysis for actor critic algorithms (Wu et al., 2020;
Zou et al., 2019; Dalal et al., 2018) analyze the case of last
transition update and do not analyze the RB aspects in these
algorithms.

Recently, Di-Castro Shashua et al. (2021) proved for the
first time the convergence of an RB-based actor critic algo-
rithm. However, their algorithm and technical tools were
focused on the sim-to-real challenge with multiple MDP
environments, and they focused only on a single sample
batch from the RB instead of K (which complicates the
proof). We provide a proof for RB-based algorithms, with a
single MDP environment and a batch of K samples.

Replay Buffer analysis: Experience replay (Lin, 1993) is
a central concept for achieving good performance in deep
reinforcement learning. Deep RB-based algorithms such as
deep Q-learning (DQN, Mnih et al., 2013), deep determin-
istic policy gradient (DDPG; Lillicrap et al., 2015), actor
critic with experience replay (ACER; Wang et al., 2016),
Twin Delayed Deep Deterministic policy gradient (TD3, Fu-
jimoto et al., 2018), Soft Actor Critic (SAC, Haarnoja et al.,
2018) and many others use RBs to improve performance
and data efficiency.

We focus mainly on works that provide some RB properties
analysis. Zhang & Sutton (2017) and Liu & Zou (2018)
study the effect of replay buffer size on the agent perfor-
mance . Fedus et al. (2020) investigated through simulated
experiments how the learning process is affected by the ratio
of learning updates to experience collected. Other works fo-
cus on methods to prioritize samples in the RB and provide
experimental results to emphasis performance improvement
when using prioritized sampling from RB (Schaul et al.,
2015; Pan et al., 2018; Zha et al., 2019; Horgan et al., 2018;

Lahire et al., 2021). We, on the other hand, focus on the
theoretical aspects of RB properties and provide conver-
gence results for RB-based algorithms. Lazic et al. (2021)
proposed a RB version for a regularized policy iteration
algorithm. They provide an additional motivation for us-
ing RBs, in addition to the advantage of reduced temporal
correlations: They claim that using RB in online learning
in MDPs can approximate well the average of past value
functions. Their analysis also suggests a new objective for
sub-sampling or priority-sampling transitions in the RB,
which differs priority-sampling objectives of previous work
(Schaul et al., 2015).

Regarding RB analysis in Deep RL algorithms, Fan et al.
(2020) performed a finite sample analysis on DQN algorithm
(Mnih et al., 2013). In their analysis, they simplified the
technique of RB with an independence assumption and they
replaced the distribution over random batches with a fixed
distribution. These assumptions essentially reduce DQN
to the neural fitted Q-iteration (FQI) algorithm (Riedmiller,
2005). In our work we focus on asymptotic convergence
and analyze explicitly the distribution of random batches
from the RB.

6. Conclusions
In this work we analyzed RB and showed some basic ran-
dom processes properties of it as ergodicity, stationarity,
Markovity, correlation, and covariance. The latter two are
of most interest since they can explain the success of mod-
ern RL algorithm based on RB. In addition, we showed
quantitatively the relations between the RB size, batch size,
and other factors.

In addition, we developed theoretical tools of stochastic
process analysis for replay buffers. We provided an exam-
ple of how to use these tools to analyze the convergence of
an RB-based actor critic algorithm. Similarly, other com-
mon RB-based algorithms in reinforcement learning such
as DQN (Mnih et al., 2013), DDPG (Lillicrap et al., 2015),
TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al., 2018)
and many others can be analyzed now, using the tools we
developed in this work.

As a future research, we propose two directions that are of
great interest and complete the analysis we provided in this
work:

1. Spectrum analysis of the learning processes. Since
we adopted an approach of ”Signals and Systems” with
random signals (Oppenheim et al., 1997; Porat, 2008),
one can use spectrum analysis in order to discover
instabilities or cycles in the learning process.

2. More complex RBs. There is a large experimental
body of work that tries to propose different schemes
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of RBs. Some of them apply different independent on
RL quantities sampling techniques while other apply
dependent on RL quantities schemes (e.g., prioritized
RB depends on the TD signal; Schaul et al., 2015). In
this work we paved the first steps to apply analysis on
such schemes (both dependent and independent).
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A. Proofs for Lemmas in Section 3
A.1. Proof of Lemma 1

Proof. Stationarity of (RBt): Recall that stationarity (in the strong sense) means that for m = 1, 2, . . . , there are times
(t1, t2, . . . , tm) such that for all τ ∈ Z

FX(Xt1+τ , . . . , Xtm+τ ) = FX(Xt1 , . . . , Xtm),

where FX(Xt1 , . . . , Xtm) is the cumulative distribution. Then,

FRB(RBt1+τ , . . . , RBtm+τ )
(1)
=FX(Xt1+τ−N+1, . . . , Xt1+τ ,

Xt2+τ−N+1, . . . , Xt2+τ ,

. . . ,

Xtm+τ−N+1, . . . , Xtm+τ ),

(2)
=FX(Xt1−N+1, . . . , Xt1 ,

Xt2−N+1, . . . , Xt2 ,

. . . ,

Xtm−N+1, . . . , Xtm)

(3)
=FRB(RBt1−N+1, . . . , RBt1),

where we use the the RB definition in (1), stationarity of X in (2), and expressing RB based on X in (3).

Stationarity of Yt: Similarly, for m = 1, 2, . . . , there are times (t1, t2, . . . , tm) and we have

FY (Yt1+τ , . . . , Ytm+τ )
(1)
=FX

 1

K

∑
j∈Jt1+τ

f(Xj), . . . ,
1

K

∑
j∈Jtm+τ

f(Xj)


(2)
=

∑
Jt1+τ ,...,Jtm+τ

FJt1+τ ,...,Jtm+τ (j1, . . . , jm)×

FX

 1

K

∑
j∈Jt1+τ

f(Xj), . . . ,
1

K

∑
j∈Jtm+τ

f(Xj)

∣∣∣∣∣∣ j1, . . . , jm


(3)
=

∑
Jt1

,...,Jtm

FJt1
,...,Jtm

(j1, . . . , jm)×

FX

 1

K

∑
j∈Jt1

f(Xj), . . . ,
1

K

∑
j∈Jtm

f(Xj)

∣∣∣∣∣∣ j1, . . . , jm


(4)
=FX

 1

K

∑
j∈Jt1

f(Xj), . . . ,
1

K

∑
j∈Jtm

f(Xj)


(5)
=FY (Yt1 , . . . , Ytm),

where in (1) we use the process Y definition, in (2) we use iterated expectation, in (3) we use both the stationarity of X and
J , in (4) we use again iterated expectation, and in (5) we use Y definition.
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A.2. Proof of Lemma 2

Proof. Proving Markovity requires that

P (RBt+1|RBt, RBt−1, . . . , RB0) = P (RBt+1|RBt). (A.1)
P (Wt+1|Wt,Wt−1, . . . ,W0) = P (Wt+1|Wt). (A.2)

We start with proving the Markovity of RBt. Let us denote Xn2
n1

(t) ≜ {Xt−n2+1, . . . , Xt−n1+1|RBt} as the set of random
variables from process X stored in the RB at time t in positions n1 to n2. Note that when a new transition is pushed to the
RB into position n = 1, the oldest transition in position n = N is thrown away, and all the transitions in the RB move one
index forward. We present here some observations regarding the RB that will help us through the proof:

RBt = XN
1 (t) = {Xt−N+1, . . . , Xt−n+1 . . . , Xt} (RB definition). (A.3)

XN
1 (t+ 1) = {Xt+1} ∪XN−1

1 (t) (A.4)

XN−1
1 (t) ⊂ XN

1 (t) (A.5)

Xt ∈ XN
1 (t) (A.6)

P (Xt+1|Xt, . . . X0) = P (Xt+1|Xt) (Since Xt is assumed to be Markovian). (A.7)
P (a, b|c1, c2, . . .) = P (a|b, c1, c2, . . .) · P (b|c1, c2, . . .) (Expressing joint probability (A.8)

as a conditional probabilities product).
P (a|b) = p(a) (If a and b are independent) . (A.9)

Computing the l.h.s. of equation (A.1) yields

P (RBt+1|RBt, . . . , RB0)
(A.3)
= P

(
XN

1 (t+ 1)
∣∣XN

1 (t), . . . , XN
1 (0)

)
(A.4)
= P

(
Xt+1, X

N−1
1 (t)

∣∣XN
1 (t), . . . , XN

1 (0)
)

(A.8)
= P

(
Xt+1

∣∣XN−1
1 (t), XN

1 (t), . . . , XN
1 (0)

)
· P
(
XN−1

1 (t)
∣∣XN

1 (t), . . . , XN
1 (0)

)
(A.5),(A.6),(A.7)

= P (Xt+1|Xt)

Similarly, computing the r.h.s of (A.1) yields

P (RBt+1|RBt)
(A.3)
= P

(
XN

1 (t+ 1)
∣∣XN

1 (t)
)

(A.4)
= P

(
Xt+1, X

N−1
1 (t)

∣∣XN
1 (t)

)
(A.8)
= P

(
Xt+1

∣∣XN−1
1 (t), XN

1 (t)
)
· P
(
XN−1

1 (t)
∣∣XN

1 (t)
)

(A.5),(A.6),(A.7)
= P (Xt+1|Xt)

Both sides of (A.1) are equal and therefore RBt is Markovian. In addition we have that for t ≥ N :

P (RBt+1|RBt) =

{
P (Xt+1|Xt) if Xt ∈ X1

1 (t) and RBt+1 = {Xt+1} ∪XN−1
1 (t),

0 otherwise.

Recall that Wt is defined as:
Wt = [RBt, Jt] (A.10)

where Jt ⊂ {t−N + 1, . . . , t} is a random subset of K time indices. By their definition, RBt and Jt are independent for
all t. Computing the l.h.s. of equation (A.2) yields

P (Wt+1|Wt, . . . ,W0)
(A.10)
= P (RBt+1, Jt+1|RBt, Jt, . . . , RB0, J0)

(A.8)
= P (RBt+1|Jt+1, RBt, Jt, . . . , RB0, J0) · P (Jt+1|RBt, Jt, . . . , RB0, J0)

(A.1),(A.9)
= P (RBt+1|RBt) · P (Jt+1)

(A.9)
= P (RBt+1, Jt+1|RBt, Jt)

(A.10)
= P (Wt+1|Wt)
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We have the required result in (A.2), therefore Wt is Markovian.

In addition, If Jt+1 is sampled according to ”unordered sampling without replacement” (defined in Section 2.2), then for
t ≥ N :

P (Wt+1|Wt) = P (RBt+1|RBt) · P (Jt+1) =


1

(NK)
P (Xt+1|Xt) if Xt ∈ X1

1 (t) and RBt+1 = {Xt+1} ∪XN−1
1 (t)

∀Jt+1 ∈ CN,K ,

0 otherwise.

A.3. Proof of Lemma 3

Proof. We prove by contradiction. Let us assume that the process RB is neither aperiodic nor irreducible. If it is aperiodic,
then one of the indices in the RB is aperiodic. Without loss of generality, let us assume that this is the l delayed time-steps
index. But since in this index we have aperiodic process, i.e., it is the process X delayed in l steps, it contradicts the
assumption that X is aperiodic. We prove irreducibility in a similar way.

Since the process Y is a deterministic function of the process RB, it must be aperiodic and irreducible as well, otherwise
it will contradict the aperiodicity and irreducibility of the process RB. Finally, since f(·) is deterministic function, and
since for each t, Yt is an image of an ergodic process Xt, i.e., each x ∈ Xt is visited infinitely often, and as a results each
point y ∈ Yt of the image of f(·) is visited infinitely often, otherwise, it contradicts the deteministic nature of f(·) or the
ergodicity of X .

B. Auto Correlation and Covariance proofs
B.1. Proof of Theorem 1

Proof. Let J̄t ⊂ {1, . . . N} and J̄t+τ ⊂ {1, . . . N} be subsets of K indices each. We begin with calculating the auto-
correlation of process Zt.

RY (τ) = E[YtYt+τ ]

(1)
= E

 1

K

∑
n∈J̄t

Zt−n+1 ·
1

K

∑
m∈J̄t+τ

Zt+τ−m+1


(2)
= E

 1

K

∑
n∈J̄t

f(Xt−n+1) ·
1

K

∑
m∈J̄t+τ

f(Xt+τ−m+1)


(3)
= EJ̄t,J̄t+τ∼CN,K ,{Xt−n+1}n∈J̄t

∼RBt,{Xt+τ−m+1}n∈J̄t+τ
∼RBt+τ

 1

K

∑
n∈J̄t

f(Xt−n+1) ·
1

K

∑
m∈J̄t+τ

f(Xt+τ−m+1)


(4)
= EJ̄t,J̄t+τ∼CN,K

E{Xt−n+1}n∈J̄t
∼RBt,{Xt+τ−m+1}n∈J̄t+τ

∼RBt+τ

 1

K

∑
n∈J̄t

f(Xt−n+1) ·
1

K

∑
m∈J̄t+τ

f(Xt+τ−m+1)

∣∣∣∣∣∣J̄t, J̄t+τ


(5)
= EJ̄t,J̄t+τ∼CN,K

[
E{Xt−n+1}n∈J̄t

∼RBt,{Xt+τ−m+1}n∈J̄t+τ
∼RBt+τ

[
En∼J̄t,m∼J̄t+τ

[f(Xt−n+1) · f(Xt+τ−m+1)]
∣∣∣J̄t, J̄t+τ

]]
(6)
= EJ̄t,J̄t+τ∼CN,K

[
En∼J̄t,m∼J̄t+τ

[
EXt−n+1,Xt+τ−m+1

[f(Xt−n+1) · f(Xt+τ−m+1)]
∣∣J̄t, J̄t+τ

]]
(7)
= EJ̄t,J̄t+τ∼CN,K

[
En∼J̄t,m∼J̄t+τ

[
E [Zt−n+1Zt+τ−m+1]

∣∣J̄t, J̄t+τ

]]
(8)
= EJ̄t,J̄t+τ∼CN,K

[
En∼J̄t,m∼J̄t+τ

[
RZ(τ + n−m)

∣∣J̄t, J̄t+τ

]]
(9)
= Eτ ′∼J̃τ

[RZ(τ
′)]
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where in (1) we used the definition of Y using the indices subsets J̄t and J̄t+τ . In (2) used the definition of Z and in (3)
we wrote the expectation explicitly. In (4) we used the conditional expectation and in (5) we wrote 1

K

∑
n∈J̄t

f(·) and
1
K

∑
m∈J̄t+τ

f(·) as an expectations since given the subsets J̄t and J̄t+τ , the probability of sampling index n or m from the
RB is uniform and equals 1

K . In (6) we switched between the expectations, since given the subsets J̄t and J̄t+τ , the samples
{Xt−nk+1}Kk=1 and {Xt+τ−mk+1}Kk=1 are independent. In (7) we used again the definition of Z and in (8) we used the
definition of the auto-correlation function of Z. In (9) we defined τ ′ = τ + n−m to be the time difference between each
couple of indices from J̄t and J̄t+τ . Note that τ ′ ∈ J̃τ where J̃τ = {τ −N + 1, . . . , τ +N − 1}.

The calculation for the covariance CY (τ) follows the same steps as we did for RY (τ).

B.2. Alternative Proof of Theorem 1

Proof. Let J̄t ⊂ {1, . . . N} and J̄t+τ ⊂ {1, . . . N} be subsets of K indices each. We begin with calculating the auto-
correlation of process Yt.

RY (τ) = E[YtYt+τ ]

= E

 1

K

∑
n∈J̄t

Zt−n+1 ·
1

K

∑
m∈J̄t+τ

Zt+τ−m+1


= EJ̄t,J̄t+τ∼CN,K

E
 1

K

∑
n∈J̄t

Zt−n+1 ·
1

K

∑
m∈J̄t+τ

Zt+τ−m+1

∣∣∣∣∣∣J̄t, J̄t+τ


= EJ̄t,J̄t+τ∼CN,K

E
 1

K2

∑
n∈J̄t

∑
m∈J̄t+τ

Zt−n+1Zt+τ−m+1

∣∣∣∣∣∣J̄t, J̄t+τ

 .

Next, we will go from the definite times defined by J̄t and J̄t+τ to all the time differences defined by the same J̄t and J̄t+τ .
Let Dt ≜ {di}Ki=1 be based on J̄t and be a set of difference times where d1 is the time from the RB beginning to the first
sample, d2 is the time from the first sample to the second samples, and so on until dK which is the time different between
the one before the last sample to the last sample. Similarly, we define Dt+τ ≜ {dj}Kj=1 to be based on J̄t+τ . Therefore,

RY (τ) = EJ̄t,J̄t+τ∼CN,K

E
 1

K2

K∑
i=1

K∑
j=1

Zt+
∑i

i′=1
di′

Zt+τ+
∑j

j′=1
dj′

∣∣∣∣∣∣J̄t, J̄t+τ


= EJ̄t,J̄t+τ∼CN,K

 1

K2

K∑
i=1

K∑
j=1

E
[
Zt+

∑i
i′=1

di′
Zt+τ+

∑j

j′=1
dj′

∣∣∣J̄t, J̄t+τ

]
= EJ̄t,J̄t+τ∼CN,K

 1

K2

K∑
i=1

K∑
j=1

RZ

 i∑
i′=1

di′ −
j∑

j′=1

dj′ + τ

 .

Recalling Definition 1 of τ ′K we get

RY (τ) = Eτ ′
K
[RZ (τ ′K)] .

B.3. Proof of Lemma 4

Proof. Let J̄t ⊂ {1, . . . N} and J̄t+τ ⊂ {1, . . . N} be subsets of K indices each. We saw in Section B.2 that we can move
from these two subsets into the set of all possible differences J̃τ . Recall that we defined τ ′ = τ + n−m to be the time
difference between each couple of indices from J̄t and J̄t+τ . Note that τ ′ ∈ J̃τ where J̃τ = {τ −N + 1, . . . , τ +N − 1}.

Here we consider the ”unordered sampling without replacement” (described in section 2.2) for sampling J̄t and J̄t+τ and we

would like to calculate the probability distribution for each time difference τ ′, that is P (τ ′). We have total of K2 ·
((

N
K

))2
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such differences since we have
(
N
K

)
possible permutations for each batch and in each permutation we have K time elements.

We define d = τ ′ − τ , therefore −N + 1 ≤ d ≤ N − 1. We now can calculate P (τ ′):

P (τ ′) =

K2

(N−K)2 · 2
1 · 3

2 · · ·
N−|τ ′−τ |

N−|τ ′−τ |−1 ·
((

N−1
K

))2
K2 ·

((
N
K

))2
1
=

K2

(N−K)2 · 2
1 · 3

2 · · ·
N−|d|

N−|d|−1 ·
((

N−1
K

))2
K2 ·

((
N
K

))2
2
=

(N − |d|) ·K! ·K! · (N −K)! · (N −K)! · (N − 1)! · (N − 1)!

(N −K)2 ·N ! ·N ! ·K! ·K! · (N − 1−K)! · (N − 1−K)!

3
=

(N − |d|) · (N −K)2

(N −K)2 ·N2

4
=

N − |d|
N2

,

where in (1) we substitute τ ′ − τ = d. In (2) we canceled similar elements in the denominator and numerator and we also
wrote explicitly the binomial terms. In (3) and (4) we again canceled similar elements in the denominator and numerator.
Notice that this probability formula is relevant only for τ −N + 1 ≤ τ ′ ≤ τ +N − 1 and other values of τ ′ can not be
reached form combining these two batches. Therefore, P (τ ′) = 0 for τ −N + 1 > τ ′ and τ ′ > τ +N − 1.

Interestingly, this proof show how parameter K is canceled out, meaning this time difference distribution is independent on
K. In addition, we can observe that the resulting distribution can be considered as a convolution of two rectangles, which
represents the time limits of each batch and the uniform sampling, and the resulting convolution, a triangle which represents
P (τ ′).

B.4. Proof of Corollary 1

Proof. Combining Theorem 1 Lemma 4 we get::

RY (τ) = Eτ ′ [RZ(τ
′)] =

∑
τ ′

P (τ ′)RZ(τ
′)

1
=

N−1∑
d=−N+1

N − |d|
N2

RZ(d+ τ)

where in (1) we used P (τ ′) from Lemma 4 and changed the variables: d = τ ′ − τ for τ −N + 1 ≤ τ ′ ≤ τ +N − 1.

Similar development can be done to CY (τ).

C. Proof of Theorem 2: Average reward and critic convergence
Proof. Recall that our TD-error update Algorithm 1 is defined as δ(Oj) = r(Sj , Aj)− η + ϕ(S′

j)
⊤w − ϕ(Sj)

⊤w, where
Oj = {Sj , Aj , r(Sj , Aj), S

′
j}. In the critic update in Algorithm 1 we use an empirical mean of TD-errors of several sampled

observations, denoted as {Oj}j∈J . Then, the critic update is defined as

w′ = w + αw 1

K

∑
j∈J

δ(Oj)ϕ(Sj).

where J is a random subset of K samples from RB with size N . Using the definition of the sampled random K indices J̄ ,
instead of J , we can write the update as:

w′ = w + αw 1

K

∑
n∈J̄

δ(Ot−n+1)ϕ(St−n+1).

In this proof we follow the proof of Lemma 5 in Bhatnagar et al. (2009). Observe that the average reward and critic updates
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from Algorithm 1 can be written as

ηt+1 = ηt + αη
t

(
F t
t +Mη

t+1

)
(C.1)

wt+1 = vt + αw
t

(
Fw
t +Mw

t+1

)
, (C.2)

where

F η
t ≜ EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t

∼RBt

 1

K

∑
n∈J̄t

r(St−n+1, At−n+1)− η

∣∣∣∣∣∣Ft


Mη

t+1 ≜

 1

K

∑
n∈J̄t

r(St−n+1, At−n+1)− ηt

− F η
t

Fw
t ≜ EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t

∼RBt

 1

K

∑
n∈J̄t

δ(Ot−n+1)ϕ(St−n+1)

∣∣∣∣∣∣Ft


Mw

t+1 ≜
1

K

∑
n∈J̄t

δ(Ot−n+1)ϕ(St−n+1)− Fw
t

and Ft is a σ-algebra defined as Ft ≜ {ητ , wτ ,M
η
τ ,M

w
τ : τ ≤ t}.

We use Theorem 2.2 of Borkar & Meyn (2000) to prove convergence of these iterates. Briefly, this theorem states that given
an iteration as in (C.1) and (C.2), these iterations are bounded w.p.1 if

Assumption 6. 1. F η
t and Fw

t are Lipschitz, the functions F∞(η) = limσ→∞ F η(ση)/σ and F∞(w) =
limσ→∞ Fw(σw)/σ are Lipschitz, and F∞(η) and F∞(w) are asymptotically stable in the origin.

2. The sequences Mη
t+1 and Mw

t+1 are martingale difference noises and for some Cη
0 , Cw

0

E
[
(Mη

t+1)
2
∣∣Ft

]
≤ Cη

0 (1 + ∥ηt∥2)

E
[
(Mw

t+1)
2
∣∣Ft

]
≤ Cw

0 (1 + ∥wt∥2).

We begin with the average reward update in (C.1). The ODE describing its asymptotic behavior corresponds to

η̇ = EJ̄∼CN,K ,{Ot−n+1}n∈J̄∼RB

 1

K

∑
n∈J̄t

r(St−n+1, At−n+1)− η

 ≜ F η. (C.3)

F η is Lipschitz continuous in η. The function F∞(η) exists and satisfies F∞(η) = −η. The origin is an asymptotically
stable equilibrium for the ODE η̇ = F∞(η) and the related Lyapunov function is given by η2/2.

For the critic update, consider the ODE

ẇ = EJ̄∼CN,K ,{Ot−n+1}n∈J̄∼RB

 1

K

∑
n∈J̄

δ(Ot−n+1)ϕ(St−n+1)

 ≜ Fw

In Lemma 5 we show that this ODE can be written as

ẇ = Φ⊤CθΦw +Φ⊤bθ, (C.4)

where Cθ and bθ are defined in (7). Fw is Lipschitz continuous in w and F∞(w) exists and satisfies F∞(w) = Φ⊤CθΦw.
Consider the system

ẇ = F∞(w) (C.5)
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In assumption 4 we assume that Φw ̸= e for every w ∈ Rd. Therefore, the only asymptotically stable equilibrium for (C.5)
is the origin (see the explanation in the proof of Lemma 5 in Bhatnagar et al. (2009)). Therefore, for all t ≥ 0

E
[
(Mη

t+1)
2
∣∣Ft

]
≤ Cη

0 (1 + ∥ηt∥2 + ∥wt∥2)

E
[
(Mw

t+1)
2
∣∣Ft

]
≤ Cw

0 (1 + ∥ηt∥2 + ∥wt∥2)

for some Cη
0 , C

w
0 < ∞. Mη

t can be directly seen to be uniformly bounded almost surely. Thus, Assumptions (A1) and (A2)
of Borkar & Meyn (2000) are satisfied for the average reward, TD-error, and critic updates. From Theorem 2.1 of Borkar &
Meyn (2000), the average reward, TD-error, and critic iterates are uniformly bounded with probability one. Note that when
t → ∞, (C.3) has ηθ defined as in (2) as its unique globally asymptotically stable equilibrium with V2(η) = (η − ηθ)

2

serving as the associated Lyapunov function.

Next, suppose that w = wπ is a solution to the system Φ⊤CθΦw = 0. Under Assumption 4, using the same arguments as in
the proof of Lemma 5 in Bhatnagar et al. (2009), wπ is the unique globally asymptotically stable equilibrium of the ODE
(C.4). Assumption 6 is now verified and under Assumption 5, the claim follows from Theorem 2.2, pp. 450 of (Borkar &
Meyn, 2000).

C.1. Proof of Lemma 5

Proof. We compute the expectation of the critic update with linear function approximation according to Algorithm 1. In
this proof, we focus on the ”Unordered sampling without replacement” strategy for sampling batch of K transitions from
the replay buffer (see Section 2.2 for this strategy probability distribution). Recall that n is a position in the RB and it
corresponds to transition Ot−n+1 = (St−n+1, At−n+1, S

′
t−n+1). We will use the notation of J̄ ⊂ {1, . . . , n, . . . , N} to

refer the K indices sampled batches. In addition we will use the following observations:

P (n|J̄ , n ∈ J̄) =
1

K
, P (n|J̄ , n /∈ J̄) = 0 (C.6)

P (n ∈ J̄) =
K

N
, P (n /∈ J̄) = 1− K

N

P (n|J̄) = P (n ∈ J̄) · P (n|J̄ , n ∈ J̄) + P (n /∈ J̄) · P (n|J̄ , n /∈ J̄) =
K

N

1

K
+ 0 =

1

N
(C.7)

P (J̄) =
1(
N
K

) (C.8)

|CN,K | =
(
N

K

)
(C.9)
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Now we can compute the desired expectation:

EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δ(Ot−n+1)ϕ(St−n+1)


= EJ̄t∼CN,K

E{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δ(Ot−n+1)ϕ(St−n+1)

∣∣∣∣∣∣J̄t


(C.6)
= EJ̄t∼CN,K

[
E{Ot−n+1}n∈J̄t

∼RBt

[
En∼J̄t

[δ(Ot−n+1)ϕ(St−n+1)]
∣∣J̄t]]

1
= EJ̄t∼CN,K

[
En∼J̄t

[
EOt−n+1

[δ(Ot−n+1)ϕ(St−n+1)]
]∣∣J̄t]

2
=

∑
J̄t∈CN,K

P (J̄t)

N∑
n=1

P (n|J̄t)EOt−n+1
[δ(Ot−n+1)ϕ(St−n+1)]

(C.7),(C.8)
=

∑
J̄t∈CN,K

1(
N
K

) N∑
n=1

1

N
EOt−n+1

[δ(Ot−n+1)ϕ(St−n+1)]

(C.9)
=

1

N

N∑
n=1

EOt−n+1
[δ(Ot−n+1)ϕ(St−n+1)]

3
=

1

N

N∑
n=1

ESt−n+1,At−n+1,S′
t−n+1

[(
r(St−n+1, At−n+1)− η + ϕ(S′

t−n+1)
⊤w − ϕ(St−n+1)

⊤w
)
ϕ(St−n+1)

]

(C.10)

where in (1) we used the linearity of expectation and that given the sampled batch J̄ , the transitions tuples {Ot−nk+1}Kk=1

are sampled independently. In (2) we wrote expectations explicitly and in (3) we used the definition of the TD-error in (4).

Next, for time t − n + 1 where 1 ≤ n ≤ N , we define the induced MC with a corresponding policy parameter θt−n+1.
For this parameter, we denote the corresponding state distribution vector ρt−n+1 and a transition matrix Pt−n+1 (both
induced by the policy πθt−n+1 . In addition, we define the following diagonal matrix Dt−n+1 ≜ diag(ρt−n+1). Similarly to
(Bertsekas & Tsitsiklis, 1996) Lemma 6.5, pp.298, we can substitute the inner expectation

ESt−n+1,At−n+1,S′
t−n+1

[(
r(St−n+1, At−n+1)− η + ϕ(S′

t−n+1)
⊤w − ϕ(St−n+1)

⊤w
)
ϕ(St−n+1)

]
= Φ⊤Dt−n+1 (Pt−n+1 − I) Φw +Φ⊤Dt−n+1(rt−n+1 − ηθe),

(C.11)

where I is the |S| × |S| identity matrix, e in |S| × 1 vector of ones and rt−n+1 is a |S| × 1 vector defined as rt−n+1(s) =∑
a πθt−n+1

(A|S)r(S,A). Combining equations (6), (C.10) and (C.11) yields

1

N

N∑
n=1

(
Φ⊤Dt−n+1 (Pt−n+1 − I) Φw +Φ⊤Dt−n+1(rt−n+1 − ηθe)

)
= Φ⊤CtΦw +Φ⊤bt, (C.12)

In the limit, t → ∞ and ρt−n+1 → µθ for all index n. Using Cθ and bθ defined in (7), (C.10) can be expressed as

EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δ(Ot−n+1)ϕ(St−n+1)

 = Φ⊤CθΦw +Φ⊤bθ. (C.13)
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D. Proof of Theorem 3: Actor convergence
Proof. Recall that our TD-error update in Algorithm 1 is defined as δ(Oj) = r(Sj , Aj)− η+ϕ(S′

j)
⊤w−ϕ(Sj)

⊤w, where
Oj = {Sj , Aj , r(Sj , Aj), S

′
j}. In the actor update in Algorithm 1 we use an empirical mean of TD-errors of several sampled

observations, denoted as {Oj}j∈J . Then, the actor update is defined as

θ′ = Γ

θ − αθ 1

K

∑
j∈J

δ(Oj)∇ log πθ(Aj |Sj)

 .

where J is a random subset of K samples from RB with size N . Using the definition of the sampled random K indices J̄ ,
instead of J , we can write the update as:

θ′ = Γ

θ − αθ 1

K

∑
n∈J̄

δ(Ot−n+1)∇ log πθ(At−n+1|St−n+1)

 .

In this proof we follow the proof of Theorem 2 in Bhatnagar et al. (2009). Let O = {S,A, S′} and let δπ(O) =
r(S,A)− η + ϕ(S′)⊤wπ − ϕ(S)⊤wπ, where wπ is the convergent parameter of the critic recursion with probability one
(see its definition in the proof for Theorem 2). Observe that the actor parameter update from Algorithm 1 can be written as

θt+1 = Γ
(
θt − αθ

t

(
δ(O)∇θ log πθ(A|S) + F θ

t − F θ
t +Nθt

t −Nθt
t

))
= Γ

(
θt − αθ

t

(
Mθ

t+1 + (F θ
t −Nθt

t ) +Nθt
t

))
where

F θ
t ≜ EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t

∼RBt

 1

K

∑
n∈J̄t

δ(Ot−n+1)∇θ log πθ(At−n+1|St−n+1)

∣∣∣∣∣∣Ft


Mθ

t+1 ≜
1

K

∑
n∈J̄t

δ(Ot−n+1)∇θ log πθ(At−n+1|St−n+1)− F θ
t

Nθ
t ≜ EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t

∼RBt

 1

K

∑
n∈J̄t

δπθ (Ot−n+1)∇θ log πθ(At−n+1|St−n+1)

∣∣∣∣∣∣Ft


and Ft is a σ-algebra defined as Ft ≜ {ητ , wτ , θτ ,M

η
τ ,M

w
τ ,Mθ

τ : τ ≤ t}.

Since the critic converges along the faster timescale, from Theorem 2 it follows that F θ
t −Nθt

t = o(1). Now, let

M2(t) =

t−1∑
r=0

αθ
rM

θ
r+1, t ≥ 1.

The quantities δ(O) can be seen to be uniformly bounded since from the proof in Theorem 2, {ηt} and {wt} are bounded
sequences. Therefore, using Assumption 5, {M2(t)} is a convergent martingale sequence (Bhatnagar & Kumar, 2004).

Consider the actor update along the slower timescale corresponding to αθ
t in Algorithm 1. Let w(·) be a vector field on a set

Θ. Define another vector field: Γ̂
(
w(y)

)
= lim0<η→0

(
Γ
(
y+ηw(y)

)
−y

η

)
. In case this limit is not unique, we let Γ̂

(
w(y)

)
be

the set of all possible limit points (see pp. 191 of (Kushner & Clark, 2012)). Consider now the ODE

θ̇ = Γ̂

−EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δπθ (Ot−n+1)∇θ log πθ(At−n+1|St−n+1)

 (D.1)
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Substituting the result from Lemma 6, the above ODE is analogous to

θ̇ = Γ̂(−∇θηθ + ξπθ ) = Γ̂
(
−Nθ

t

)
(D.2)

where ξπθ =
∑

S µθ(S)
(
ϕ(S)⊤∇θw

πθ −∇θV̄
πθ (S)

)
. Consider also an associated ODE:

θ̇ = Γ̂
(
−∇θηθ

)
(D.3)

We now show that h1(θt) ≜ −Nθt
t is Lipschitz continuous. Here wπθt corresponds to the weight vector to which the critic

update converges along the faster timescale when the corresponding policy is πθt (see Theorem 2). Note that µθ(S), S ∈ S
is continuously differentiable in θ and have bounded derivatives. Also, η̄θt is continuously differentiable as well and has
bounded derivative as can also be seen from (2). Further, wπθt can be seen to be continuously differentiable with bounded
derivatives. Finally, ∇2πθt(A|S) exists and is bounded. Thus h1(θt) is a Lipschitz continuous function and the ODE (D.1)
is well posed.

Let Z denote the set of asymptotically stable equilibria of (D.3) i.e., the local minima of ηθ, and let Zϵ be the ϵ-neighborhood
of Z . To complete the proof, we are left to show that as supθ ∥ξπθ∥ → 0 (viz. δ → 0), the trajectories of (D.2) converge to
those of (D.3) uniformly on compacts for the same initial condition in both. This claim follows the same arguments as in the
proof of Theorem 2 in Bhatnagar et al. (2009).

D.1. Proof of Lemma 6

Proof. We compute the required expectation with linear function approximation according to Algorithm 1. Following the
same steps when proving the expectation for the critic in Section C.1, we have:

EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δπθ (Ot−n+1)∇θ log πθ(At−n+1|St−n+1)


=

1

N

N∑
n=1

ESt−n+1,At−n+1,S′
t−n+1

[(
r(St−n+1, At−n+1)− η + ϕ(S′

t−n+1)
⊤w − ϕ(St−n+1)

⊤w
)
∇θ log πθ(At−n+1|St−n+1)

]
Recall the definition of the state distribution vector ρt−n+1 in Section 4.4. In the limit, t → ∞ and ρt−n+1 → µθ for all
index n, then:

EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δπθ (Ot−n+1)∇θ log πθ(At−n+1|St−n+1)


=
∑
S∈S

µθ(S)
∑
A∈A

πθ(A|S)

(
r(S,A)− ηθ +

∑
S′∈S

P (S′|S,A)ϕ(S′)⊤wπθ − ϕ(S)⊤wπθ

)
∇θ log πθ(A|S)

We define now the following term:

V̄ πθ (S) =
∑
A∈A

πθ(A|S)Q̄πθ (S,A) =
∑
A∈A

πθ(A|S)

(
r(S,A)− ηθ +

∑
S′∈S

P (S′|S,A)ϕ(S′)⊤wπθ

)
, (D.4)

where V̄ πθ (S) and Q̄πθ (S,A) correspond to policy πθ. Note that here, the convergent critic parameter wπθ is used. Let’s
look at the gradient of (D.4):
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∇θV̄
πθ (S) = ∇θ

(∑
A∈A

πθ(A|S)Q̄πθ (S,A)

)

=
∑
A∈A

∇θπθ(A|S)

(
r(S,A)− ηθ +

∑
S′∈S

P (S′|S,A)ϕ(S′)⊤wπθ

)

+
∑
A∈A

πθ(A|S)

(
−∇θηθ +

∑
S′∈S

P (S′|S,A)ϕ(S′)⊤∇θw
πθ

)

=
∑
A∈A

∇θπθ(A|S)

(
r(S,A)− ηθ +

∑
S′∈S

P (S′|S,A)ϕ(S′)⊤wπθ

)
−∇θηθ +

∑
A∈A

πθ(A|S)
∑
S′∈S

P (S′|S,A)ϕ(S′)⊤∇θw
πθ

Summing both sides over the stationary distribution µθ∑
S

µθ(S)∇θV̄
πθ (S) =

∑
S

µθ(S)
∑
A∈A

∇θπθ(A|S)

(
r(S,A)− ηθ +

∑
S′∈S

P (S′|S,A)ϕ(S′)⊤wπθ

)

+
∑
S

µθ(S)

(
−∇θηθ +

∑
A∈A

πθ(A|S)
∑
S′∈S

P (S′|S,A)ϕ(S′)⊤∇θw
πθ

)

= EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δπθ (Ot−n+1)∇θ log πθ(At−n+1|St−n+1)


−∇θηθ +

∑
S

µθ(S)
∑
A∈A

πθ(A|S)
∑
S′∈S

P (S′|S,A)ϕ(S′)⊤∇θw
πθ

Then:

∇θηθ = EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δπθ (Ot−n+1)∇θ log πθ(At−n+1|St−n+1)


+
∑
S

µθ(S)

(∑
A∈A

πθ(A|S)
∑
S′∈S

P (S′|S,A)ϕ(S′)⊤∇θv
πθ −∇θV̄

πθ (S)

)
.

Since µθ is a stationary distribution,∑
S

µθ(S)
∑
A∈A

πθ(A|S)
∑
S′∈S

P (S′|S,A)ϕ(S′)⊤∇θw
πθ =

∑
S

µθ(S)
∑
S′∈S

Pθ(S
′|S)ϕ(S′)⊤∇θw

πθ

=
∑
S′

∑
S

µθ(S)Pθ(S
′|S)ϕ(S′)⊤∇θw

πθ

=
∑
S′

µθ(S
′)ϕ(S′)⊤∇θw

πθ ,

Then,

∇θηθ = EJ̄t∼CN,K ,{Ot−n+1}n∈J̄t
∼RBt

 1

K

∑
n∈J̄t

δπθ (Ot−n+1)∇θ log πθ(At−n+1|St−n+1)


+
∑
S

µθ(S)
(
ϕ(S)⊤∇θw

πθ −∇θV̄
πθ (S)

)
The result follows immediately.


